Bibliography

[1]

Gauthier Limpens. Generating energy transition pathways: application to Belgium. PhD thesis, UCLouvain, 2021. doi:10.13140/RG.2.2.25755.18724.

[2]

Gauthier Limpens, Stefano Moret, Hervé Jeanmart, and Francois Maréchal. EnergyScope TD: A novel open-source model for regional energy systems. Applied Energy, 255(March):113729, 2019.

[3]

Victor Codina Gironès, Stefano Moret, François Maréchal, and Daniel Favrat. Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making. Energy, 90(PA1):173–186, 2015. doi:10.1016/j.energy.2015.06.008.

[4]

Stefano Moret, Michel Bierlaire, and François Maréchal. Strategic Energy Planning under Uncertainty: a Mixed-Integer Linear Programming Modeling Framework for Large-Scale Energy Systems. In Computer Aided Chemical Engineering, volume 38, 1899–1904. 2016. doi:10.1016/B978-0-444-63428-3.50321-0.

[5]

Stefano Moret. Strategic energy planning under uncertainty. PhD thesis, École Polytechnique Fédérale de Lausanne, 2017. doi:10.5075/EPFL-THESIS-7961.

[6]

Gauthier Limpens, Hervé Jeanmart, and Francois Maréchal. Belgian energy transition: what are the options? Energies, 13(1):261, 2020. URL: https://doi.org/10.3390/en13010261.

[7]

Paolo Thiran, Aurélia Hernandez, Hervé Jeanmart, and Gauthier Limpens. " energyscope multi-cell: a novel open-source model for multi-regional energy systems and application to a 3-cell, low-carbon energy system. Master's thesis, UCLouvain, 2020.

[8]

Noé Cornet, Pauline Eloy, Hervé Jeanmart, and Gauthier Limpens. Energy exchanges between countries for a future low-carbon western europe : merging cells in energyscope mc to handle wider regions. Master's thesis, UCLouvain, 2021.

[9]

Paolo Thiran, Aurélia Hernandez, Gauthier Limpens, Matteo Giacomo Prina, Hervé Jeanmart, and Francesco Contino. Flexibility options in a multi-regional whole-energy system: the role of energy carriers in the italian energy transition. In The 34th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. 2021.

[10]

Xavier Rixhon, Gauthier Limpens, Diederik Coppitters, Hervé Jeanmart, and Francesco Contino. The role of electrofuels under uncertainties for the belgian energy transition. Energies, 14(13):4027, 2021.

[11]

Gauthier Limpens, Diederik Coppitters, Xavier Rixhon, Francesco Contino, and Hervé Jeanmart. The impact of uncertainties on the belgian energy system: application of the polynomial chaos expansion to the energyscope model. In proceedings of ECOS 2020 conference, volume 33, 711. 2020.

[12]

Gauthier Limpens, Stefano Moret, Gianfranco Guidati, Xiang Li, François Maréchal, and Hervé Jeanmart. The role of storage in the Swiss energy transition. In proceedings of ECOS 2019 conference, 761–774. 2019.

[13]

M Borasio and S Moret. Deep decarbonisation of regional energy systems: a novel modelling approach and its application to the italian energy transition. Renewable and Sustainable Energy Reviews, 153:111730, 2022.

[14]

Josep Maria Rosello Martinez. Study of the spanish energy transition. Master's thesis, Universitat Politècnica de Catalunya, 2021.

[15]

Jeroen Dommisse, Jean-Louis Tychon, Hervé Jeanmart, and Gauthier Limpens. Modelling of low carbon energy systems for 26 european countries with energyscopetd: can european energy systems reach carbon neutrality independently? Master's thesis, UCLouvain, 2020.

[16]

Bastien Muyldermans, Gauthier Néve, Hervé Jeanmart, and Gauthier Limpens. Multi-criteria optimisation of an energy system and application to the belgian case. Master's thesis, UCLouvain, 2021.

[17]

Damon Coates, Guillaume Percy, Hervé Jeanmart, and Gauthier Limpens. " energy models coupling: soft-link between a long-term planning model and a dispatch model (energyscope td-dispa-set). Master's thesis, UCLouvain, 2020.

[18]

Paolo Gabrielli, Matteo Gazzani, Emanuele Martelli, and Marco Mazzotti. Corrigendum to “Optimal design of multi-energy systems with seasonal storage” [Appl. Energy (2017)]. Applied Energy, 212(June):720, 2018. doi:10.1016/j.apenergy.2017.12.070.

[19]

Jacques Després, Silvana Mima, Alban Kitous, Patrick Criqui, Nouredine Hadjsaid, and Isabelle Noirot. Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis. Energy Economics, 64:638–650, 2017. doi:10.1016/j.eneco.2016.03.006.

[20]

Paul Nahmmacher, Eva Schmid, Lion Hirth, and Brigitte Knopf. Carpe diem: a novel approach to select representative days for long-term power system modeling. Energy, 112:430–442, 2016.

[21]

André Pina, Carlos A. Silva, and Paulo Ferrão. High-resolution modeling framework for planning electricity systems with high penetration of renewables. Applied Energy, 112:215–223, 2013. doi:10.1016/j.apenergy.2013.05.074.

[22]

Kris Poncelet, Hanspeter Hoschle, Erik Delarue, Ana Virag, and William Drhaeseleer. Selecting representative days for capturing the implications of integrating intermittent renewables in generation expansion planning problems. IEEE Transactions on Power Systems, 32(3):1936–1948, 2017. doi:10.1109/TPWRS.2016.2596803.

[23]

Fernando Domínguez-Muñoz, José M. Cejudo-López, Antonio Carrillo-Andrés, and Manuel Gallardo-Salazar. Selection of typical demand days for CHP optimization. Energy and Buildings, 43(11):3036–3043, 2011. doi:10.1016/j.enbuild.2011.07.024.

[24]

Robert Fourer, David M Gay, and Brian W Kernighan. Ampl: a mathematical programming language. Management Science, 36(5):519–554, 1990.

[25]

European Commission - Eurostat. Glossary: Final Energy Consumption.

[26]

International Energy Agency. Definitions. URL: https://www.iea.org/statistics/resources/balancedefinitions/ (visited on 29-07-2019).

[27]

Pantelis Capros, A De Vita, N Tasios, P Siskos, M Kannavou, A Petropoulos, S Evangelopoulou, M Zampara, D Papadopoulos, Ch Nakos, and others. Eu reference scenario 2016-energy, transport and ghg emissions trends to 2050. European Commission Directorate-General for Energy, 2016. doi:10.2833/9127.

[28]

FlatIcon. URL: https://www.flaticon.com (visited on 2019-09-20).

[29]

Masahiro Sugiyama. Climate change mitigation and electrification. Energy Policy, 44:464–468, 2012. doi:10.1016/j.enpol.2012.01.028.

[30]

Elise Dupont, Rembrandt Koppelaar, and Hervé Jeanmart. Global available solar energy under physical and energy return on investment constraints. Applied Energy, 257:113968, 2020.

[31]

Gauthier Limpens. v2.1 Updated version of EnergyScope TD for Belgian application. URL: https://github.com/energyscope/EnergyScope/tree/v2.1.

[32]

European Commission - Eurostat. Statistical pocketbook 2017. Technical Report 4, European Commission - Eurostat., 2017. doi:10.2832/147440.

[33]

Damon Coates and Guillaume Percy. Energy models coupling: soft-link between a long-term planning model and a dispatch model (energyscope td - dispa-set). Master's thesis, UCLouvain, 2020. URL: http://hdl.handle.net/2078.1/thesis:25205.

[34]

Sylvain Quoilin, Ignacio Hidalgo Gonzalez, and Andreas Zucker. JRC TECHNICAL REPORTS Modelling Future EU Power Systems Under High Shares of Renewables. Technical Report, European Union, 2017. doi:10.2760/25400.

[35]

Danish Energy Agency. Technology Data for Energy Plants for Electricity and District heating generation - Feb. 2019. Technical Report February, Danish Energy Agency, 2019.

[36]

Institut Royal Météorologique. Atlas climatique. URL: https://www.meteo.be/fr/climat/atlas-climatique/cartes-climatiques/rayonnement-solaire/rayonnement-solaire-global/annuel (visited on 2019-08-01).

[37]

Sofia Simoes, Wouter Nijs, Pablo Ruiz, Alessandra Sgobbi, Daniela Radu, Pelin Bolat, Christian Thiel, and Stathis Peteves. The JRC-EU-TIMES model. Assessing the long-term role of the SET Plan Energy technologies. Technical Report EUR 26292 EN, Joint Research Center, 2013. doi:10.2790/97596.

[38]

BS Elbersen, IG Staritsky, GM Hengeveld, MJ Schelhaas, HSD Naeff, and H Böttcher. Atlas of eu biomass potentials: spatially detailed and quantified overview of eu biomass potential taking into account the main criteria determining biomass availability from different sources. Technical Report, Alterra/IIASA, 2012.

[39]

Hydrogen Import Coalition. Shipping sun and wind to Belgium is key in climate neutral economy Hydrogen Import Coalition - Period 2017-2027. Technical Report April, Hydrogen Import Coalition, 2020.

[40]

B.P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, J. Reinhard, C.O. Vadenbo, and G. Wernet. The ecoinvent database: Overview and methodology, Data quality guideline for the ecoinvent database version 3. Technical Report, Eco-invent Database, 2013.

[41]

Volker Quaschning. Regenerative Energiesysteme: Technologie-Berechnung-Simulation. Carl Hanser Verlag GmbH Co KG, pages 1–12, 2015. doi:10.3139/9783446461147.fm.

[42]

Chemical Engineering. Chemical Engineering's Plant Cost Index. http://www.chemengonline.com/pci-home, May 2016.

[43]

Eurostat. Energy balance sheets - 2015 DATA. Technical Report, Eurostat, 2017. doi:10.2785/388553.

[44]

Gauthier Limpens and Hervé Jeanmart. Electricity storage needs for the energy transition: an eroi based analysis illustrated by the case of belgium. Energy, 152:960–973, 2018. URL: https://doi.org/10.1016/j.energy.2018.03.180.

[45]

Elia. Electricity scenarios for Belgium towards 2050. Technical Report November, Elia, 2017.

[46]

Danielle Devogelaer, Jan Duerinck, Dominique Gusbin, Yves Marenne, Wouter Nijs, Marco Orsini, and Marie Pairon. “Towards 100% renewable energy in Belgium by 2050”. Technical Report, Bureau Federal du Plan, ICEED and VITO, 2013.

[47]

Vlaamse Instelling voor Technologisch Onderzoek. VITO website. URL: https://vito.be/nl/diepe-geothermie/balmatt-site.

[48]

A. Delmer, A. Rorive, and V. Stenmans. Dix ans de geothermie en Hainaut. Bulletin - Societe Belge de Geologie, 105(1-2):77–85, 1997.

[49]

Elise Dupont, Rembrandt Koppelaar, and Hervé Jeanmart. Global available wind energy with physical and energy return on investment constraints. Applied Energy, 209(July):322–338, 2018. doi:10.1016/j.apenergy.2017.09.085.

[50]

EU Commission and others. A roadmap for moving to a competitive low carbon economy in 2050. COM (2011) 112final, Document 52011DC0112, 2011.

[51]

Epex spot. Swissix market data chart - Year 2010. https://www.epexspot.com/.

[52]

Prognos AG. Die Energieperspektiven für die Schweiz bis 2050. December 2012.

[53]

Swiss Federal Office of Statistics (SFOS). IPC, prix moyens de l'énergie et des carburants. 2016.

[54]

Vincent Beuret. Evolution des marchés des Énergies fossiles 4 / 2015. Technical Report, Swiss Federal Office of Energy (SFOE), Bern, Switzerland, March 2016.

[55]

European Commission. Energy Roadmap 2050, Impact assessment and scenario analysis. Technical Report, European Commission, Brussels, Belgium, December 2011.

[56]

Swiss Federal Office of Statistics (SFOS). Indice des prix à la consommation, prix moyens mensuels pour 100 l de mazout pour des quantités types. 2016.

[57]

F. Ess, A. Kirchner, and V. Rits. Kosten neuer Kernkraftwerke. Technical Report, Prognos AG, Basel, Switzerland, February 2011.

[58]

Selma Brynolf, Maria Taljegard, Maria Grahn, and Julia Hansson. Electrofuels for the transport sector: a review of production costs. Renewable and Sustainable Energy Reviews, 81:1887–1905, 2018.

[59]

European Commission - Eurostat. Energy balance sheets 2016 DATA 2018 edition. Technical Report, European Commission - Eurostat., 2018. doi:10.2785/02631.

[60]

Maarten Reyniers and Laurent Delobbe. The nowcasting system INCA-BE in Belgium and its performance in different synoptic situations. ERAD 2012 - The 7th European Conference on Radar in Meteorology and Hydrology, pages 2012, 2012.

[61]

U.S. Department Of Transportation. 2009 National Household Travel Survey: Summary of Travel Trends. Technical Report, U.S. Department Of Transportation, 2009. doi:FHWA-PL-ll-022.

[62]

Frank Meinke-Hubeny, Larissa P N De Oliveira, and Jan Duerinck. Energy Transition in Belgium – Choices and Costs. Technical Report, EnervyVille, 2017.

[63]

Wim C Sinke, Christophe Ballif, Andreas Bett, Bernhard Dimmler, Doriana Dimova-Malinovska, Peter Fath, Nigel Mason, Francesca Ferrazza, Hansjörg Gabler, Maria Hall, and others. A strategic research agenda for photovoltaic solar energy technology. Technical Report, Joint Research Center, 2007.

[64]

Association des entreprises électriques suisses (AES). Energie Éolienne. 2013.

[65]

Association des entreprises électriques suisses (AES). Grande hydraulique. Technical Report, Association des entreprises électriques suisses (AES), 2014.

[66]

Swiss Federal Office of Energy (SFOE). Statistique des aménagements hydroélectriques de la Suisse - Etat au 01.01.2013. Technical Report, Swiss Federal Office of Energy (SFOE), 2013.

[67]

Association des entreprises électriques suisses (AES). Electricité géothermique. Technical Report, Association des entreprises électriques suisses (AES), 2012.

[68]

Joint Research Center. Energy Technology Reference Indicator 2014 - projection for 2010-2050. Technical Report, Joint Research Center, 2014. doi:10.2790/057687.

[69]

IEA - International Energy Agency. IEA World Energy Investment Outlook 2014 - Power Generation in the New Policies and 450 Scenarios. 2014.

[70]

Association des enterprises électriques suisses. Energie nucléaire. March 2014.

[71]

Christian Bauer, Thomas Heck, Roberto Dones, Oliver Mayer-Spohn, and Markus Blesl. New Energy Externalities Developments for Sustainability (NEEDS) - Deliverable n°7.2 - RS 1a: Final report on technical data, costs, and life cycle inventories of advanced fossil power generation systems. Technical Report, March 2008.

[72]

Swissnuclear. Financement - energienucleaire.ch. https://www.kernenergie.ch/fr/financement-_content—1–1306.html.

[73]

Swiss Federal Office of Energy (SFOE). Swiss electricity statistics 2013. Technical Report, Swiss Federal Office of Energy (SFOE), 2014.

[74]

U.S. EIA - Energy Information Administration. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants. Technical Report, U.S. EIA - Energy Information Administration, Washington, April 2013.

[75]

MASAKAZU NOSE, TOMO KAWAKAMI, SOUSUKE NAKAMURA, HIDETOSHI KUROKI, MASAHITO KATAOKA, and MASANORI YURI. Development of hydrogen/ammonia firing gas turbine for decarbonized society. Mitsubishi Heavy Industries Technical Review, 58(3):1, 2021.

[76]

Jussi Ikäheimo, Juha Kiviluoma, Robert Weiss, and Hannele Holttinen. Power-to-ammonia in future north european 100% renewable power and heat system. International Journal of Hydrogen Energy, 43(36):17295–17308, 2018.

[77]

Ove Arup and Partners Ltd. Review of the generation costs and deployment potential of renewable electricity technologies in the UK. Study Report, Department of Energy and Climate Change, London, October 2011.

[78]

European Commission. Energy Sources, Production Costs and Performance of Technologies for Power Generation, Heating and Transport. 2008.

[79]

Vincent Rits and Almut Kirchner. Die Energieperspektiven 2035 - Band 5 Analyse und Bewertung des Elektrizitätsangebotes. Technical Report, Prognos AG, Basel, June 2007.

[80]

Walter Meier AG. Listes de Prix Walter Meier. Prix valables dès avril 2011. 2011.

[81]

NERA Economic Consulting and AEA. The UK Supply Curve for Renewable Heat. Study for the Department of Energy and Climate Change. Technical Report, NERA Economic Consulting and AEA, London, UK, July 2009.

[82]

Helen Carla Becker. Methodology and Thermo-Economic Optimization for Integration of Industrial Heat Pumps. PhD thesis, École Polytechnique Fédérale de Lausanne, 2012. doi:10.5075/epfl-thesis-5341.

[83]

IEA - International Energy Agency. Renewables for Heating and Cooling. Untapped Potential. Technical Report, IEA - International Energy Agency, Paris, 2007.

[84]

Kyoung S Ro, Keri Cantrell, Douglas Elliott, and Patrick G Hunt. Catalytic wet gasification of municipal and animal wastes. Industrial & engineering chemistry research, 46(26):8839–8845, 2007.

[85]

Martina Pöschl, Shane Ward, and Philip Owende. Evaluation of energy efficiency of various biogas production and utilization pathways. Applied energy, 87(11):3305–3321, 2010.

[86]

Richard L. Bain and Ralph P. Overend. Biomass for heat and power. Forest Products Journal, 52(2):12–19, 2002.

[87]

Raffaella Gerboni, Martin Pehnt, Peter Viebahn, and Evasio Lavagno. Final report on technical data, costs and life cycle inventories of fuel cells. Technical Report, 2008.

[88]

Antonio M Pantaleo, Sara Giarola, Ausilio Bauen, and Nilay Shah. Integration of biomass into urban energy systems for heat and power. Part I: An MILP based spatial optimization methodology. Energy Conversion and Management, 83:347–361, 2014. doi:http://dx.doi.org/10.1016/j.enconman.2014.03.050.

[89]

Hoval SA. Catalogue des Produits Hoval. Production de Chaleur et Génie Climatique. April 2016.

[90]

Viessman. Viessman products catalogue. 2016.

[91]

Battelle. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxilliary Power Applications. Technical Report, Battelle, February 2014.

[92]

M Kwanten. Kilomètres parcourus par les véhicules belges. 2016.

[93]

National Research Council. Transitions to alternative vehicles and fuels. National Academies Press, 2013.

[94]

Bureau fédéral du Plan and Service public fédéral Mobilité et Transports. Perspectives de l' évolution de la demande de transport en Belgique à l' horizon 2030. Technical Report, Bureau fédéral du Plan and Service public fédéral Mobilité et Transports, 2012.

[95]

S. Taszka and S. Domergue. Analyse couts benefices des vehicules electriques les autobus et autocars. 2018.

[96]

Ayman Moawad, P Sharer, and A Rousseau. Light-duty vehicle fuel consumption displacement potential up to 2045. Technical Report, Argonne national laboratory, 2013.

[97]

Brian D James and Andrew B Spisak. Mass production cost estimation of direct h2 pem fuel cell systems for transportation applications: 2012 update. report by Strategic Analysis, Inc., under Award Number DEEE0005236 for the US Department of Energy, 2012.

[98]

Victor Codina Gironès, Stefano Moret, François Maréchal, and Daniel Favrat. Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making. Energy, 90, Part 1:173–186, October 2015. doi:10.1016/j.energy.2015.06.008.

[99]

SA Enerdata. Efficacité energétique des modes de transport: rapport final. 2004.

[100]

Swedish Electromobility Centre. Fuel cells for heavy duty trucks 2030+? Technical Report, Swedish Electromobility Centre, 2019.

[101]

Xavier Rixhon, Martin Colla, Davide Tonelli, Kevin Verleysen, Gauthier Limpens, Hervé Jeanmart, and Francesco Contino. Comprehensive integration of the non-energy demand within a whole- energy system: Towards a defossilisation of the chemical industry in Belgium. In proceedings of ECOS 2021 conference. 2021.

[102]

IEA - International Energy Agency. The future of petrochemicals - towards more sustainable plastics and fertilisers. 2018.

[103]

Minbo Yang and Fengqi You. Comparative techno-economic and environmental analysis of ethylene and propylene manufacturing from wet shale gas and naphtha. Industrial & Engineering Chemistry Research, 56(14):4038–4051, 2017.

[104]

Tao Ren. Petrochemicals from oil, natural gas, Ccoal and biomass: energy use, economics and innovation. Utrecht University, 2009.

[105]

Aitor Cruellas, JJ Bakker, Martin van Sint Annaland, JA Medrano, and Fausto Gallucci. Techno-economic analysis of oxidative coupling of methane: current state of the art and future perspectives. Energy Conversion and Management, 198:111789, 2019.

[106]

P Haro, P Ollero, and F Trippe. Technoeconomic assessment of potential processes for bio-ethylene production. Fuel Processing Technology, 114:35–48, 2013.

[107]

Ioannis Tsiropoulos, Ric Hoefnagels, Sierk de Jong, Machteld van den Broek, Martin Patel, and André Faaij. Emerging bioeconomy sectors in energy systems modeling–integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: a case study for the netherlands. Biofuels, Bioproducts and Biorefining, 12(4):665–693, 2018.

[108]

Pieter A Reyniers, Laurien A Vandewalle, Stephanie Saerens, Philip De Smedt, Guy B Marin, and Kevin M Van Geem. Techno-economic analysis of an absorption based methanol to olefins recovery section. Applied Thermal Engineering, 115:477–490, 2017.

[109]

Danish Energy Agency. Technology Data for Renewable Fuels - 0001. Technical Report February, Danish Energy Agency, 2019. URL: www.ens.dk.

[110]

Guido Collodi, Giuliana Azzaro, Noemi Ferrari, and Stanley Santos. Demonstrating large scale industrial ccs through ccu–a case study for methanol production. Energy Procedia, 114:122–138, 2017.

[111]

Rui Rosa. The Role of Synthetic Fuels for a Carbon Neutral Economy. Journal of Carbon Reserach, 3(4):11, 2017. doi:10.3390/c3020011.

[112]

Laurence Tock. Thermo-environomic optimisation of fuel decarbonisation alternative processes for hydrogen and power production. PhD thesis, École Polytechnique Fédérale de Lausanne, 2013. doi:10.5075/epfl-thesis-5655.

[113]

Kerstin Hoyer, Christian Hulteberg, Mattias Svensson, Josefina Jernberg, and Øyvind NØrregÅrd. Biogas upgrading - Technical Review. Technical Report, Energiforsk, 2016.

[114]

Martin Gassner, Fréderic Vogel, Georges Heyen, and François Maréchal. Optimal process design for the polygeneration of sng, power and heat by hydrothermal gasification of waste biomass: thermo-economic process modelling and integration. Energy & Environmental Science, 4(5):1726–1741, 2011.

[115]

Jachin Gorre, Felix Ortloff, and Charlotte van Leeuwen. Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage. Applied Energy, 253:113594, 2019.

[116]

Mar Pérez-Fortes, Jan C Schöneberger, Aikaterini Boulamanti, and Evangelos Tzimas. Methanol synthesis using captured co2 as raw material: techno-economic and environmental assessment. Applied Energy, 161:718–732, 2016.

[117]

David W. Keith, Geoffrey Holmes, David St. Angelo, and Kenton Heidel. A Process for Capturing CO2 from the Atmosphere. Joule, 2(8):1573–1594, 2018. doi:10.1016/j.joule.2018.05.006.

[118]

Eloy S. Sanz-Pérez, Christopher R. Murdock, Stephanie A. Didas, and Christopher W. Jones. Direct Capture of CO2 from Ambient Air. Chemical Reviews, 116(19):11840–11876, 2016. doi:10.1021/acs.chemrev.6b00173.

[119]

Danish Energy Agency. Technology data for Energy storage. Technical Report November 2018, Danish Energy Agency, 2018. arXiv:ISBNwww: 978-87-7844-931-3.

[120]

Behnam Zakeri and Sanna Syri. Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42:569–596, 2015. doi:10.1016/j.rser.2014.10.011.

[121]

Jakob Moritz Fabian Rager. Urban Energy System Design from the Heat Perspective using mathematical programming including thermal storage. PhD thesis, École Polytechnique Fédérale de Lausanne, 2015.

[122]

Engie Electrabel. La centrale d'accumulation par pompage de Coo: L'eau pour produire l'électricité. Technical Report, Electrabel, Engie, 2014.

[123]

Mirhadi S. Sadaghiani and Mehdi Mehrpooya. Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration. International Journal of Hydrogen Energy, 42(9):6033–6050, 2017. doi:10.1016/j.ijhydene.2017.01.136.

[124]

Association des entreprises électriques suisses (AES). Scénarios pour l'approvisionnement Électrique du futur. Rapport global. Technical Report, Association des entreprises électriques suisses (AES), 2012.

[125]

Doris Stump. Swiss parliament - 10.3348 - Sécuriser notre réseau de transmission et de distribution d'électricité. 2010.

[126]

Elia. Rapport sur l'avancement du développement de la capacité d'interconnexion et de la gestion de la demande. Technical Report, Elia, 2015.

[127]

ENTSOE. Appendix TYNDP 2018. Final version after public consultation and ACER opinion – October 2019. Technical Report October, ENTSOE, 2019.

[128]

Elia. Modele general de calcul de la capacite de transfert totale et de la marge de fiabilite de transport - Modèle applicable aux frontières Belges pour les capacités annuelles et mensuelles. Technical Report, Elia, 2019.

[129]

S. Thalmann, T. Nussbaumer, J. Good, and A. Jenni. Analyse und Optimierung von Fernwärmenetzen. Technical Report, Swiss Federal Office of Energy (SFOE), Zürich, November 2013.

[130]

Susana Paardekooper, Rasmus Søgaard Lund, Brian Vad Mathiesen, Miguel Chang, Uni Reinert Petersen, Lars Grundahl, Andrei David, Jonas Dahlbæk, Ioannis Aristeidis Kapetanakis, Henrik Lund, Nis Bertelsen, Kenneth Hansen, David William Drysdale, and Urban Persson. Heat roadmap belgium: quantifying the impact of low-carbon heating and cooling roadmaps. Technical Report, October 2018.

[131]

American Council for an Energy-Efficient Economy. How Much Does Energy Efficiency Cost ? Technical Report, American Council for an Energy-Efficient Economy, 2015.

[132]

Office fédéral de l'énergie (OFEN). Perspectives Énergétiques 2050. Annexes au résumé. Technical Report, Office fédéral de l'énergie (OFEN), Bern, Switzerland, October 2013.

[133]

Laurent Pollijn, Peter Herman, and Marc Kwanten. Chiffres Clés de la Mobilité 2017. Technical Report, SPF-mobility, 2018.